Video Object Segmentation with Re-identification

نویسندگان

  • Xiaoxiao Li
  • Yuankai Qi
  • Zhe Wang
  • Kai Chen
  • Ziwei Liu
  • Jianping Shi
  • Ping Luo
  • Xiaoou Tang
  • Chen Change Loy
چکیده

Conventional video segmentation methods often rely on temporal continuity to propagate masks. Such an assumption suffers from issues like drifting and inability to handle large displacement. To overcome these issues, we formulate an effective mechanism to prevent the target from being lost via adaptive object re-identification. Specifically, our Video Object Segmentation with Re-identification (VSReID) model includes a mask propagation module and a ReID module. The former module produces an initial probability map by flow warping while the latter module retrieves missing instances by adaptive matching. With these two modules iteratively applied, our VS-ReID records a global mean (Region Jaccard and Boundary F measure) of 0.699, the best performance in 2017 DAVIS Challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation

The problem of video object segmentation can become extremely challenging when multiple instances co-exist. While each instance may exhibit large scale and pose variations, the problem is compounded when instances occlude each other causing failures in tracking. In this study, we formulate a deep recurrent network that is capable of segmenting and tracking objects in video simultaneously by the...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Image sequence segmentation via heuristic texture analysis and region tracking

We develop a method for automatic segmentation of natural video sequences. The method is based on low-level spatial and temporal analyses. It features three designs to help facilitate good region segmentation while keeping the computational complexity at a reasonable level. Firstly, a preliminary seed-area identification and a final re-segmentation process are performed on each video frame to h...

متن کامل

Automatic body segmentation with graph cut and self-adaptive initialization level set (SAILS)

With the extensive potential applications of computer technologies, automatic object segmentation plays a more and more important role in digital video processing, pattern recognition, and computer vision. In this paper, we propose an automatic human body segmentation system mainly consisting of human body detection and object segmentation. Firstly, an automatic human body detector is designed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.00197  شماره 

صفحات  -

تاریخ انتشار 2017